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Abstract

You are raising capital to trade on a profitable new stock-picking strat-
egy. You have approached a wealthy investor, Alice, for seed funding. To
convince Alice, you must offer proof that you can pick winning stocks
while revealing nothing about how you do it. The standard way to do this
right now is through trading, but this approach is expensive and does not
speak to the novelty of your strategy. In this paper, I show how to give
Alice a zero-cost zero-knowledge proof that you can pick stocks in a way
that is different from what others are doing.
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Introduction

Imagine that you are an emerging manager who knows about a brand-new
way to pick stocks. When your stock-picking rule says “buy”, a stock tends to
have above-average returns. When your rule says “sell”, the stock usually has
below-average returns. No one else has thought to trade like this before.

Return predictability and trading profits are two sides of the same coin
(Fama, 1976). So you could make money by going long the stocks with buy
recommendations and selling short the ones marked as sell. You are currently
trying to raise capital to do just that. This is why you are sitting in a pitch
meeting with Alice, a wealthy potential investor.

Of course, anyone can claim to be skilled after the fact. Once returns have
been realized on the 30th of the month, it is easy to come up with long and short
positions that would have been profitable to trade on had you known about
them on the 1st. So before giving you any money, Alice wants to see proof that
you knew about your stock-picking rule ahead of time.

One way to provide such a proof would be to trade on your rule with the
small amount of money you have right now. As an emerging manager, you do
not currently have much personal wealth to draw on. But you do have some.
Suppose that if you had used this money to go long the stocks where your new
rule said “buy” and short the ones where it said “sell”, then you would have
earned a 10% profit. If you were able to show Alice this 10% value at the top
of a profit-and-loss statement on the 30th, she could be certain that you knew
about a profitable stock-picking rule on the 1st.

The main benefit of giving Alice this sort of proof-by-trading is that it reveals
no additional information about how you pick stocks, only that you can do it. In
other words, trading produces a “zero-knowledge proof” (Goldwasser, Micali,
and Rackoff, 1989) of your stock-picking skill.

After returns have been realized on the 30th of the month, Alice knows
which stocks she should have bought and which she should have sold on the
1st. With the benefit of hindsight, Alice can think up a vast number of different
combinations of buy and sell recommendations that would also have produced
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a 10% profit last month. She just cannot trade on any of these combinations
because she did not know how to compute them on the 1st of the month. When
Alice sees 10% at the top of your profit-and-loss statement on the 30th, she
learns that you did know how to compute your positions on the 1st. However,
since she can think up so many other equally profitable positions in hindsight,
she learns nothing else about your particular stock-picking rule.

This logic is computational not Bayesian. It follows the contours of the
“simulation paradigm” (Goldwasser and Micali, 1982), the standard approach to
modeling secrecy in computer science. It does not make sense to apply Bayes’
rule. Alice cannot have priors about the likelihood of encountering a manager
with knowledge of your specific stock-picking rule. If she knew enough to form
such priors, she would already be trading on your stock-picking rule herself.

Unfortunately, there are two important drawbacks to proof-by-trading. First,
trading strategies need to be funded. And, as an emerging manager, you do not
currently have much cash. Even if the long and short positions implied by your
stock-picking rule exactly cancel each other out, you still have to pay trading
costs, cover margin, etc. You must pay a large startup cost to begin trading.1

Second, proof-by-trading says nothing about the novelty of your stock-picking
rule. Alice has already invested money with a number of other managers. She
is not interested in whether it would be profitable to invest money with you
in isolation. She does not care about whether your stock-picking rule predicts
raw returns. She cares about whether it predicts the residual component of
returns that she herself cannot predict. Alice wants to know whether it would
be profitable to add your return profile to her existing portfolio. Even if you
have stock-picking skill, Alice may not want to invest money with you if you
are just duplicating the positions of an existing manager.

In this paper, I develop an alternative way for you to prove your stock-picking
skill to Alice that solves both these problems. In other words, I introduce a
zero-cost zero-knowledge protocol for proving novel stock-picking skill. Under
a homomorphic encryption scheme (Rivest, Adleman, and Dertouzos, 1978;
Gentry, 2009), it is possible to add and multiply pairs of encrypted numbers and
1Sonali Basak. “Veteran Hedge Fund Manager on ‘Insane’ Startup Costs.” Bloomberg. Jun 1 2023.
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then decrypt the result to reveal the mathematically correct answer. Thus, if Alice
sends you encrypted numbers, you can add and multiply them together without
needing to decrypt them first. This fact allows you to compute the accuracy of
your stock-picking rule without revealing any additional information about how
it works to Alice. At the end of the day, building portfolio positions is expensive.
Sending encrypted messages is free.

Before anything else happens on the 1st of the month, you start by computing
a buy/sell recommendation for each stock. Then, after returns have been realized
on the 30th, Alice encrypts the component of each stock’s return that she failed
to predict, and she sends you this encrypted ciphertext. Because she uses a
homomorphic encryption scheme, this ciphertext will allow you to calculate
whether it would have been profitable to trade on your stock-picking rule given
Alice’s residual returns. The result of your calculation will be encrypted, so it
will look like gibberish to you. But Alice will be able to decrypt it when you
send it to her. If she sees a large value, Alice can conclude that you knew about
a profitable new way to pick stocks at the start of the month.

This novel protocol solves both of the problems associated with proof-by-
trading. First, it requires no upfront costs because you are exchanging encrypted
messages with Alice rather than building costly portfolio positions. Second,
because it verifies that your buy/sell recommendations predict Alice’s residual
returns rather than raw returns, the protocol demonstrates that you can pick
stocks in a way that is different from what Alice is already doing. It does not
just prove you have skill. It proves you have novel skill.

When using the proof-by-encryption protocol, Alice never sees your specific
recommendation for any particular stock on the 1st of the month. She only
ever sees the profit from trading on these recommendations given her residual
returns. And after these returns have been realized on the 30th, she can think of
a vast number of different combinations of buy and sell recommendations that
would have been equally profitable to trade on. When following my protocol,
Alice would have received an equivalent encrypted ciphertext if you had been
trading on any of these other combinations. So Alice can learn nothing else
about the particular combination you are trading on besides its profitability.
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My new protocol offers the same security guarantee as proof-by-trading.
Proof-by-encryption confirms that you knew about profitable buy/sell recom-
mendations on the 1st of the month. But it reveals no additional information
about how you generated them because Alice can think of lots of ways to produce
equally accurate predictions on the 30th.

Proof-by-encryption can be implemented using a number of existing homo-
morphic encryption schemes. I provide an example of what an encrypted buy
order would look like using the approach in Brakerski and Vaikuntanathan
(2011). I use simulations to verify the numerical precision of encrypted estimates
of stock-picking skill under this approach. While my baseline setup involves bi-
nary buy/sell recommendations, it is also possible to extend proof-by-encryption
to cover continuous stock-picking rules.

Moreover, managers typically trade on only their strongest predictions. A
stock-picking rule might involve sorting stocks by some characteristic and then
going long/short the highest/lowest decile. In this setting, I show that proof-by-
encryption actually produces a more informative signal than proof-by-trading.
There is information in the predictions you made but chose not to trade on.
This information does not show up in your profit-and-loss statement.

It is possible to characterize when a zero-knowledge proof of stock-picking
skill must exist more generally. The key insight is that, under standard assump-
tions, all problems in “NP have zero-knowledge proof systems (Goldreich, Micali,
and Wigderson, 1991)”. NP problems have solutions that are easy to verify once
you see one.2 So to rule out the possibility of a zero-knowledge proof of skill, it
would have to be computationally hard for Alice to verify your skill even if she
knew how you were picking stocks. This is unrealistic. There is a reason why
traders are forced to sign non-compete agreements.3 Current employers worry
about them leaving and describing their most profitable ideas to someone else.
This fear only makes sense if these ideas are easy to recognize.
2A crossword puzzle is a good example of an NP problem (Garey and Johnson, 2002). Solving
this Sunday’s grid might take you an hour, but it will only take a second to verify your guess
for 31 down once you see the answer key in next week’s paper.

3Lindsay Fortado. “DE Shaw Imposes Non-Compete Demands On Staff.” The Financial Times.
September 19th, 2019.
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Right now, emerging managers like yourself must rely on private wealth or
personal connections to raise seed capital. Then, after trading for a year or two,
if you want to grow your fund, you would then have to convince investment
consultants who serve as gatekeepers for their large institutional clients. The
process is expensive and time-consuming. Investment consultants represented
roughly $47t in institutional assets as of 2022.4 And at the moment an emerging
manager must “have [at least] a three-year track record to be in a consultant
database.”5 There is skill involved. Some people are better at it than others, and
these people are not necessarily the ones with the most profitable trading ideas.

Proof-by-encryption offers a way to bypass this arrangement and create a
spot market for profitable trading ideas. This is a market where you can sell the
rights to trade on a profitable stock-picking rule at a price that depends only
on the rule’s performance. Before purchasing the rights to trade on an idea, a
buyer can see how profitable it would be to add the stock-picking rule to their
existing portfolio. . .but only via a zero-cost zero-knowledge proof. The buyer
would not get to see your underlying approach to picking winners and losers.

The existence of such a spot market would allow emerging managers who
lack personal capital and wealthy friends to raise seed capital. It is likely that,
given how the odds are stacked against them, many would-by emerging man-
agers never bother trying to raise capital in the first place. To address this
problem, many large institutional investors now have funds earmarked for
under-represented groups.6 A spot market is a more direct solution to this
problem, akin to running a “blind” orchestra audition (Goldin and Rouse, 2000).

A spot market for profitable trading ideas would also have numerous down-
stream consequences for the active management industry more broadly. Right
now, due to privacy concerns, idea generation is done almost entirely in-house.
The results in this paper suggest that there is no fundamental reason why this
has to be the case. I show how a trader who is good at coming up with new
4https://www.pionline.com/specialreports/investment-consultants
5Amy Whyte. “Allocators Need Them. Asset Managers Resent Them. And Everyone Is Afraid of
Them.” Institutional Investor. Mar 4 2019.

6J.P. Morgan Asset Management. (Mar 8 2021) “J.P. Morgan launches Project Spark to support
diverse emerging alternative investment managers.”
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stock-picking ideas can sell them to the highest bidder without fear of disclosing
their secret sauce. This fact has clear implications for how profits are shared
between managers (who have ideas) and allocators (who fund them).

Large institutional investors face a difficult portfolio problem (Basak and
Pavlova, 2013). Given their size, these investors must give money to multiple
active managers, and it is hard to tell whether two active managers are taking
similar positions by studying their past track records. They have to worry about
unknowingly doubling down on a particular trading strategy. This worry likely
has played a role in the shift towards passive investing over the past two decades
(Chinco and Sammon, 2023). Proof-by-encryption directly solves this problem
by measuring whether a manager can produce uncorrelated alpha.

This is just the tip of the iceberg. Much of the active management industry
is organized around preserving the secrecy of good trading ideas. It is hard to
imagine all the knock-on effects of being able to sidestep this concern.

Paper Outline. Section 1 describes how to use homomorphic encryption
to give a zero-cost zero-knowledge proof that you have novel stock-picking
skill. Section 2 shows how to implement this protocol. Section 3 characterizes
the robustness of this construction. Section 4 discusses how this proof system
makes it possible to have a spot market for profitable trading ideas.

Notation. Uppercase Latin letters are counts indexed by the correspond-
ing lowercase Latin letter—e.g., there are 𝑛 = 1, . . . , 𝑁 stocks. Greek letters are
continuous parameters. Words in italics are Variables, words in sans serif are
Sets, and words in teletype are Protocols. {0, 1}ℓ denotes all binary strings of
length ℓ, and {0, 1}∗ def

= ∪0≤ℓ {0, 1}ℓ denotes the set of all binary strings.

Related Work. Previous researchers have studied the computational
complexity of finding equilibrium allocations (Nisan, Roughgarden, Tardos,
and Vazirani, 2007; Roughgarden, 2010; Papadimitriou, 2015). In particular,
Nisan and Segal (2006) shows that, to arrive at a Pareto efficient allocation,
you must convey at least as much information as is contained in prices. While
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proof-by-encryption might at first seem to contradict this finding, on closer
inspection it does not. Stock-picking skill is not an equilibrium phenomenon.

It is now common to see computational considerations play a role in eco-
nomics research. The applications range from finance (Hatfield, Kominers,
Nichifor, Ostrovsky, and Westkamp, 2013; Chinco and Fos, 2021; Dworczak,
Kominers, and Akbarpour, 2021; Akbarpour, Kominers, Li, Li, and Milgrom,
2023; Veldkamp, 2023) to game/auction theory (Mu’Alem and Nisan, 2008; Mil-
grom, 2021; Gonczarowski, Heffetz, and Thomas, 2023) to mechanism design
(Roth, 2002; Milgrom, 2009; Budish, 2011; Budish, Che, Kojima, and Milgrom,
2013; Kominers, Teytelboym, and Crawford, 2017; Azevedo and Budish, 2019;
Budish and Kessler, 2022).

However, at the moment, economists primarily think about computation as
a constraint. “Computational constraints can be just as real as the constraints
imposed by information or incentives. (Golowich and Li, 2022)” This paper
pushes in a different direction. I constructively apply results from the computer
science literature to open up new ways of organizing financial markets.

There is a strand of finance literature studying cryptocurrencies (Biais,
Bisiere, Bouvard, Casamatta, and Menkveld, 2022; Makarov and Schoar, 2020;
Cong, Li, and Wang, 2021, 2022; Sockin and Xiong, 2022; Griffin and Shams, 2020;
Liu, Tsyvinski, and Wu, 2022; Duchin, Solomon, Tu, and Wang, 2022; Pagnotta,
2022). However, this work largely treats cryptocurrencies as yet another asset
class. Cryptography plays little to no role in that analysis. By contrast, it is a
central building block in this paper.

I know of only a handful of other economics papers that directly incorporate
cryptographic protocols. Abbe et al. (2012) proposes that banks use them to
disclose risk exposures, and Hastings et al. (2022) suggests using similar tools to
perform stress tests. In an accounting context, Cao et al. (2019) and Cao et al.
(2020) deploy zero-knowledge proofs to verify accounting statements rather
than portfolio positions.

Recently, a number of computationally-minded papers have shed new light
on how trading is currently organized via exchanges (Rostek and Yoon, 2021;
Wittwer, 2021; Budish, Cramton, Kyle, Lee, and Malec, 2023; Rostek and Yoon,
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2023). In this paper, I show how active managers can construct off-exchange
signals as a way to prove their stock-picking skill.

There is a large literature looking at the problem of performance evaluation
(Wermers, 2000; Berk and Green, 2004; Kosowski et al., 2006; Barras et al., 2010;
Berk and van Binsbergen, 2015; Pástor et al., 2015; Giglio et al., 2021). These
papers assume that past trading success is the only credible way that an active
manager can signal their ability to pick stocks without revealing how they do
it. Getmansky (2012), Fung, Hsieh, Naik, and Ramadorai (2008), Aggarwal and
Jorion (2010), and Cao, Farnsworth, and Zhang (2021) document how difficult it
is for emerging managers to raise startup capital. However, these papers do not
propose better ways of accomplishing the goal.

Finally, this paper departs from classic work on information-based asset
pricing in an important way (Grossman and Stiglitz, 1980; Hellwig, 1980; Admati,
1985; Kyle, 1985; Veldkamp, 2023). In those papers, investors already know
which variables to focus on. For example, in Grossman and Stiglitz (1980),
traders know to interpret the equilibrium price as a noisy signal about the
fundamental value of a single asset. By contrast, in this paper, an emerging
manager wants to keep the source of his predictive success a secret.

1 Main Result

Subsection 1.1 outlines the return-predictability problem that Alice is trying
to solve. Subsection 1.2 defines what it means to “prove” your skill to Alice and
gives a full-information benchmark (proof-by-revelation). Subsection 1.3 de-
scribes a subset of proof systems that generate zero-knowledge proofs and gives
a notable example of one such system (proof-by-trading). Proof-by-trading is the
current industry standard. However, it suffers from two key drawbacks: proof-
by-trading requires upfront capital to trade with and does not demonstrate the
originality of a stock-picking rule. Subsection 1.4 shows how to produce a zero-
cost zero-knowledge proof of novel stock-picking skill (proof-by-encryption).
This new proof system is the main result.
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Benefits Drawbacks

Proof-By-Revelation, p15
Protocol 1 (RevealIt)

• Simple. Full-information
benchmark

• Does not require upfront capital.
• Does not require trusted 3rd party.
• Allows Alice to learn whether your

stock-picking rule is different from
the one she is already trading on.

• Discloses too much information.
Allows Alice to trade on your
profitable new stock-picking rule
without paying you a dime. As far as
possible from being a zero know-
ledge proof.

Proof-By-Trading, p17
Protocol 2 (TradeOnIt)

• Familiar. This is the industry
standard that is currently used by
asset managers at the moment.

• Produces a zero-knowledge proof of
your stock-picking skill.

• Requires upfront capital.
• Requires trusted 3rd party to issue

profit-and-loss statement.
• Alice cannot be certain that your

stock-picking rule is different from
the one she is already trading on.

Proof-By-Encryption, p21
Protocol 3 (EncryptIt)

• Does not require upfront capital.
• Produces zero-knowledge proof of

your stock-picking skill.
• Does not require trusted 3rd party.
• Allows Alice to learn whether your

stock-picking rule is different from
the one she is already trading on.

Table 1. Main benefits and drawbacks of the three different proof systems that I study in this paper.
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1.1 General Framework

You are an emerging manager who is raising money to trade on a prof-
itable new stock-picking strategy. Alice is an asset allocator whom you have
approached for seed funding. Alice is in charge of the active portfolio for a large
institutional investor. Here is the core problem she is trying to solve.

Market Environment. There are 𝑁 ≫ 1 stocks in your investable uni-
verse. Each of these stocks has 𝐾 characteristics. Think about the 𝑘th character-
istic, Characteristic𝑛,𝑘 , as a stock’s past returns, its market cap, its sales growth,
etc. Characteristics𝑛

def
= {Characteristic𝑛,𝑘}𝐾𝑘=1 is the 𝐾-dimensional vector of

characteristics for the 𝑛th stock, and CharacteristicSpace is the set of all possible
𝐾-dimensional characteristic vectors that a stock could have.

In the model, you and Alice both have your own stock-picking rules. As an
asset allocator, Alice has invested money with other managers in the past. Think
about her stock-picking rule as the consensus recommendation for each stock
coming from her existing stable of managers.

Let Return𝑛 denote the 𝑛th stock’s realized return at the end of the current
period, and let Resid𝑛 denote the component of this stock’s return that Alice
cannot explain using her own stock-selection rule. Assume that Resid𝑛 = ±1%
with Pr[ Resid𝑛 = +1% ] = 1/2. Alice knows that half the stocks in her investable
universe will have positive residuals at the end of the period. So do you. But
neither of you knows which 𝑁/2 stocks it will be.

Let f(·) denote a deterministic polynomial-time rule for making buy/sell
recommendations at the start of the period:

f : CharacteristicSpace ↦→ {“buy”, “sell”} (1)

When f(Characteristics𝑛) = “buy”, the 𝑛th stock tends to realize above-average
returns, Return𝑛 = +1%. Whereas, if f(Characteristics𝑛) = “sell”, the 𝑛th stock
would have been more likely to have below-average returns, Return𝑛 = −1%.
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Let 𝛼 ∈ [0, 1/2) denote your rule’s accuracy over Alice’s residuals:

1/2 + 𝛼 def
= Pr

[
Resid𝑛 = +1% | f(Characteristics𝑛) = “buy”

]
(2a)

= Pr
[
Resid𝑛 = −1% | f(Characteristics𝑛) = “sell”

]
(2b)

Alice does not care whether you can predict raw returns directly. She cares
about whether you can predict them in a way that is different from what her
existing managers are already doing. Can you generate uncorrelated alpha?
Does your stock-picking rule explain her residual returns?

Since your stock-picking rule accurately predicts Alice’s residuals, 𝛼 > 0, it
would be profitable for her to implement a strategy with positions

Position𝑛
def
= $0.50 ×


+1 if f(Characteristics𝑛) = “buy”

−1 if f(Characteristics𝑛) = “sell”
(3)

This strategy is long $0.50 in each buy and short $0.50 of each sell.
In other words, the parameter 𝛼 lives a double life. In addition to capturing

the accuracy of your stock-picking rule, 𝛼 also corresponds to the profit 𝜋 from
a long/short strategy based on your recommendations:

𝜋
def
=

(
1

𝑁 · | ± $0.50|

)
×

𝑁∑︁
𝑛=1

Position𝑛
your position

in the 𝑛th stock

× Resid𝑛
residual return
on this position

(4)

For example, if 𝛼 = 0.10 meaning that your stock-picking rule correctly predicts
60% of Alice’s residuals, then she would take home 𝜋 = $0.10 in profit for each
$1.00 spent on offsetting ±$0.50 long/short positions—i.e., 𝜋 = $1.00 × 𝛼.

Decision Problem. “A decision problem consists of a specification of a
subset of possible instances. Given an instance, one is required to determine
whether the instance is in the specified set. . . [The goal is to decide] whether a
given object has some predetermined property. (Goldreich, 2010)”

Let Problem denote an arbitrary decision problem. Instances represents all
instances that conform to this decision problem. We write that 𝑖 ∈ Problem if
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the 𝑖th instance has the predetermined property associated with that specific
decision problem. For example, the Boolean satisfiability decision problem (SAT;
Cook, 1971) asks you to determine whether there is a collection of “true”/“false”
assignments that will satisfy the 𝑖th Boolean formula. If yes, then 𝑖 ∈ SAT.

Let’s now look at Alice’s specific decision problem. She wants to know
whether, at the start of the period, you knew about a profitable stock-picking rule
different from her own. We say that you have novel stock-picking skill if𝛼 ≥ 𝛼min

for some 𝛼min > 0. That is the “predetermined property”. The “given object”
consists of your stock-picking rule f(·) with 𝛼 ∈ [0, 1/2); the characteristics
displayed at the start of the current trading period, {Characteristics𝑛}𝑁𝑛=1; and,
Alice’s residual returns at the end of the period, {Resid𝑛}𝑁𝑛=1.

Definition 1 (Alice′sProblem).

(Instance) A stock-picking rule f(·) with 𝛼 ∈ [0, 1/2); {Characteristics𝑛}𝑁𝑛=1 at
the start of the period; and, {Resid𝑛}𝑁𝑛=1 at the end of the period.

(Question) Is 𝛼 ≥ 𝛼min for some prespecified 𝛼min > 0?

If the correct answer to this question is “yes” for the 𝑖th instance, then we
write that 𝑖 ∈ Alice′sProblem. You have novel stock-picking skill in that sort of
instance. Conversely, if the correct answer is “no”, then 𝑖 ∉ Alice′sProblem.

The timing is important. Note that Alice solves her decision problem at the
end of the current period. At that point in time, she can observe each stock’s
characteristics at the start of the period, {Characteristics𝑛}𝑁𝑛=1, as well as her
residual returns, {Resid𝑛}𝑁𝑛=1. She also has access to any additional information
she can glean from interacting with you over the course of the trading period.

Let 𝐶𝛼 denote the number of stocks for which your stock-picking rule cor-
rectly predicts Alice’s residual:

𝐶𝛼
def
= 𝑁 · (1/2 + 𝛼) (5)

After returns have been realized at the end of the period, Alice can enumerate
all

(𝑁
𝐶𝛼

)
possible ways to make 𝐶𝛼 correct predictions. Her question is whether

you knew how to calculate one of these possible ways at the start of the period.
And she can only figure this out by talking to you.
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Lemma 1 (20/20 Hindsight). After returns have been realized, there is a proba-
bilistic polynomial-time algorithm for creating recommendations that correctly
predict Alice’s residuals with probability (1/2 + 𝛼) for any choice of 𝛼 ∈ [0, 1/2).

The intuition behind this lemma is straightforward. Suppose you want a
collection of 𝑁 buy/sell recommendations that are correct with probability
(1/2 + 𝛼) for some 𝛼 ∈ [0, 1/2). Draw 𝑁 IID samples from Unif ( [0, 1]). Then,
rank these samples. For stocks 1 : 𝐶𝛼, set the recommendation equal to the sign
of Alice’s residual. For the remaining stocks ranked (𝐶𝛼 + 1) : 𝑁 , do the opposite.

1.2 Interactive Proof Systems

I now describe what it means to prove your stock-picking skill to Alice and
give a natural full-information benchmark example of such a proof system.

The Definition of “Proof”. For each instance of her decision problem,
you either know about a stock-picking rule that predicts the component of
returns that she cannot: 𝛼 > 0 ⇔ 𝑖 ∈ Alice′sProblem. Or you do not: 𝛼 = 0 ⇔
𝑖 ∉ Alice′sProblem. A proof that you have novel stock-picking skill should allow
her to discern which situation applies to the current instance. In other words, a
proof is a message that you send to Alice, Proof ∈ {0, 1}∗, that allows her to use
a polynomial-time machine, Verifier, to verify your claim:

Verifier( 𝑖 | Proof ) = 1 for all 𝑖 ∈ Alice′sProblem (6)

The complexity class NP contains all decision problems that have short
easy-to-verify solutions.

Definition 2 (Complexity Class NP). We say that Problem ∈ NP if there exists
a polynomial-time machine, Verifier, such that for each conforming instance
𝑖 ∈ Instances there exists some Proof ∈ {0, 1}Poly( |𝑖 |) whereby

𝑖 ∈ Problem ⇔ Verifier( 𝑖 | Proof ) = “yes” (7)
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An NP problem may be hard to solve, but any solution to one of these prob-
lems must be obviously correct the moment you see it. Determining whether
there are true/false assignments that satisfy a Boolean formula is a classic
example of an NP problem, called Boolean satisfiability (SAT; Cook, 1971).

Clearly we have that Alice′sProblem ∈ NP. If you described your stock-
picking rule to Alice at the start of the period, she would be able to easily verify
whether it was any good. This description would constitute a short proof that
you have stock-picking skill. It would also allow Alice to trade on your stock-
picking rule. This is why traders go on garden leave when moving from one
employer to the next. A trader’s previous employer does not want them to give
a description of his best trading ideas to the new employer.

Interactive Protocol. How do you generate the Proof ∈ {0, 1}Poly( |𝑖 |) for
the 𝑖th instance? You interact with Alice (Babai, 1985; Goldwasser, Micali, and
Rackoff, 1989). The transcript of your conversation is the proof.

Let ⟨Verifier ↔ Prover⟩𝑖 denote the proof produced by the interaction
between a Prover (this is you) and a Verifier (this is Alice) for the 𝑖th instance. I
will use ⟨Verifier↔ Prover⟩(𝑖) ∈ {“yes”, “no”} as shorthand for the verifier’s
decision about the 𝑖th instance after interacting with the prover:

⟨Verifier↔ Prover⟩(𝑖) def
= Verifier( 𝑖 | ⟨Verifier↔ Prover⟩𝑖 ) (8)

Definition 3 (Interactive Proof System). An interactive proof system is a protocol
between a computationally unbounded Prover and a probabilistic polynomial-
time Verifier that satisfies the following two conditions:
(Completeness) No false negatives. For all instances 𝑖 ∈ Problem

Pr
[
⟨Verifier↔ Prover⟩(𝑖) = “yes”

]
= 1 (9)

(Soundness) Few false positives. For all instances 𝑖 ∉ Problem

Pr
[
⟨Verifier↔ Prover

: ⟩(𝑖) = “yes”
]
< 1/2 (10)
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The protocol Prover: represents any choice of prover, including
but not limited to the one specified by the proof system.

The completeness condition captures the idea that a good proof system
should convince Alice that you have novel stock-picking skill on instances where
that is actually the case. The soundness condition captures the idea that, when
following this proof system, a trader who does not have novel stock-picking
skill should not be able to fool Alice into thinking otherwise.

The specific choice of 1/2 in Equation (10) is not important. By iterating on
an interactive proof system, Alice can make the protocol arbitrarily sound (see
subsection 2.3 below). However, it is important that the soundness condition
holds for any choice of Prover: , not just the one specified in the proof system.
The prover should not be able to fool the verifier using a different protocol.

Proof-By-Revelation. What is the simplest possible way that you could
prove to Alice that you have novel stock-picking skill? You could give Alice your
buy/sell recommendation for each stock at the start of the period. Then, after
returns are realized, Alice could calculate whether your initial recommendations
predicted her residuals sufficiently well—i.e., whether 𝛼 > 𝛼min for some
𝛼min > 0 value chosen by Alice ahead of time.

Protocol 1 (RevealIt).

(Step #1) At the start of the period, you compute recommendations for each
stock, {f(Characteristics𝑛)}𝑁𝑛=1, and send the positions implied by
these recommendations to Alice.

(Step #2) At the end of the period, Alice uses Equation (4) to calculate 𝛼 given
her realized residual returns, {Resid𝑛}𝑁𝑛=1.

If she finds 𝛼 > 𝛼min for some 𝛼min > 0, she decides that 𝑖 ∈ Alice′sProblem—i.e.,
that you have stock-picking skill. Otherwise, she decides 𝑖 ∉ Alice′sProblem.

If you know about a novel stock-picking rule, proof by revelation will clearly
demonstrate this fact to Alice (completeness). And, if you do not know about
such a rule, then you cannot fool Alice more than half the time by randomly
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making buy/sell recommendations at the start of the period (soundness). And
calculating the accuracy of your rule via Equation (4) is as easy as computing
an inner product, meaning it can be done in polynomial time.

Proposition 1. RevealIt is an interactive proof system for Alice′sProblem.

Of course, there is a good reason why you should not reveal your pick for
each stock to Alice at the start of the period as highlighted in the first row of
Table 1. If you did that, you would make it easy for her to reverse engineer how
you were picking stocks. She could ask herself: “What kind of rule would have
lead you to say “buy” for this stock but “sell” for that one?”

By guessing the correct answer, Alice would be able to profit from your novel
stock-picking skill in future periods without paying you a dime. This is why
only new and/or inexperienced traders use proof by revelation to prove that
they have novel stock-picking skill. Instead, they trade on their stock-picking
rule using whatever money they have.

1.3 Zero-Knowledge Proofs

Next, I show that, by trading on your buy and sell recommendations, you can
prove to Alice that you can pick stocks without revealing anything else about
how you do it. In other words, proof-by-trading will generate a zero-knowledge
proof of your stock-picking skill.

Proof-By-Trading. For simplicity, assume your short positions must be
fully funded. At the start of the period, suppose you send your broker a briefcase
with $𝑁/2 in cash and you tell him to put on the long and short positions implied
by Equation (3). At the end of the period, you will have profits

𝜋 = (𝑁 · | ± $0.50|) × 𝛼 (11)

And your broker sends this value to Alice. If 𝜋 > 𝜋min for some 𝜋min > $0 chosen
ahead of time, Alice can be sure your initial positions were profitable.
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Protocol 2 (TradeOnIt).

(Step #1) At the start of the period, you compute recommendations for each
stock, {f(Characteristics𝑛)}𝑁𝑛=1. You send your broker $𝑁/2 in cash
and instructions to build the positions dictated by Equation (3).

(Step #2) At the end of the period, your broker tells Alice what the combined
profit was from these long and short positions, 𝜋.

If 𝜋 > 𝜋min for some 𝜋min > 0, then Alice decides that 𝑖 ∈ Alice′sProblem—i.e.,
that you have stock-picking skill. Otherwise, she decides 𝑖 ∉ Alice′sProblem.

If Alice cared about raw returns rather than her own residual returns, then
Equation (4) tells us that seeing your trading profits, 𝜋, at the end of the period
would have the same information content as directly computing the accuracy
of your stock-picking rule, 𝛼, making TradeOnIt complete and sound.

Proposition 2. If Alice has no stock-picking skill of her own, {Resid𝑛}𝑁𝑛=1 =

{Return𝑛}𝑁𝑛=1, then TradeOnIt is an interactive proof system for Alice′sProblem.

What’s more, notice that Alice learns nothing about which stocks you pre-
dicted correctly or how you produced these predictions by interacting with
you according to the TradeOnIt protocol. She only learns how profitable your
predictions would have been to trade on.

Here is the logic. After returns have been realized, Alice can think up lots
of signals that would have correctly predicted returns for a fraction (1/2 + 𝛼)
of all stocks. It does not matter which 𝛼 ∈ [0, 1/2) you choose. Any collection
of buy/sell recommendations that makes 𝐶𝛼 correct returns predictions will
do. If you had been trading on any one of these equally accurate signals, then
your broker would have sent Alice the exact same message, 𝜋. And that insight
is the essence of why Alice learns so little about your stock-picking rule from
proof-by-trading. If every interaction with a skilled trader looks the same and
Alice can simulate all these outcomes herself, then she cannot learn anything
new from interacting with you (a skilled trader).

Simulation Paradigm. This line of reasoning is known as the “simulation
paradigm” (Lindell, 2017). The Simulator protocol for TradeOnIt samples ran-
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dom collections of buy/sell recommendations that are correct with probability
(1/2 + 𝛼) where 𝛼 corresponds to the accuracy of your stock-picking rule. The
protocol then computes the profitability of these simulated recommendations
according to Equation (4). The key point is that Alice would be unable to distin-
guish this simulated 𝜋 from the actual signal sent to her by your broker. This is
true for any accuracy level 𝛼 ∈ [0, 1/2). Thus, if Alice only cared about whether
you could predict raw returns, then you could use TradeOnIt to prove your
ability to pick stocks in zero knowledge.

The Bayesian-updating paradigm says that, in order to prove Alice learns
nothing besides your skill level from TradeOnIt, you need a detailed model of
Alice’s information set. And this would be very problematic. How can you be
sure what Alice does and does not know?

The simulation paradigm sidesteps this quagmire. If Alice cannot distinguish
her conversation with you from a simulated conversation she had with herself,
then she cannot be learning anything else from interacting with you other
than the accuracy of your stock-picking rule, 𝛼. It does not matter what her
information set looks like.

Zero-Knowledge Proof. With this idea in hand, we can now define the
notion of a zero-knowledge proof (Goldwasser, Micali, and Rackoff, 1989).

Definition 4 (Zero-Knowledge Proof). An interactive proof system gives zero-
knowledge proofs forProblem if for every probabilistic polynomial-time Verifier:

there is a probabilistic polynomial-time Simulator such that for all 𝑖 ∈ Instances

⟨Verifier: ↔ Prover⟩(𝑖) = Simulator( 𝑖 | Verifier: ) (12)

The Simulator protocol is conditioned on Alice’s choice of verification
scheme because the simulation paradigm requires that Alice be able to simulate
her interaction with you all by herself based on things she already knows. And
one of the things is the list of questions she will ask you.

Proposition 3. If Alice has no stock-picking skill of her own, {Resid𝑛}𝑁𝑛=1 =

{Return𝑛}𝑁𝑛=1, then TradeOnIt gives a zero-knowledge proof of Alice′sProblem.
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But again, there are reasons why you might not be able to give Alice a proof-
by-trading as highlighted in Table 1. Here is one reason: real-world strategies
need to be funded, and you might not have the upfront capital to fund the
long and short positions implied by your stock-picking rule. Here is another:
your potential investor will typically be invested with other managers, who
have stock-picking rules of their own. As a result, Alice cares about both the
profitability and novelty of your stock-picking rule.

1.4 Proof-By-Encryption

By using a homomorphic encryption scheme, it is possible to construct an
alternative interactive proof system that fixes both problems associated with
proof-by-trading. This proof-by-encryption protocol allows you to prove to Alice
that you know about a novel way to pick stocks at no upfront cost and without
revealing any additional information to her about how you do it.

Encryption Scheme. A public-key encryption scheme (Diffie and Hellman,
1976) is composed of two protocols, (Enc, Dec). Each of these protocols takes
two arguments as inputs. The first argument to the Enc protocol is the message
you want to encrypt. The second argument is a public key, PublicKey. The first
argument to the Dec protocol is the encrypted ciphertext you want to decrypt,
and the second argument to this protocol is the secret key, SecretKey, which is
needed to do the decrypting.

Here is the fundamental identity behind any encryption scheme:

Dec
[
Enc(Message, PublicKey), SecretKey

]
= Message (13)

Anyone can encrypt a message because everyone can see the PublicKey. But the
SecretKey is only known by the person who set up the encryption scheme. As a
result, they are the only ones who can decrypt an encrypted ciphertext:

Dec
[
Enc(Message, PublicKey),AnyOtherValue

]
= Gibberish (14)
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Going forward, I will suppress the dependence of both Enc and Dec on the
public and secret key values. For example, I will write Enc(Message) rather
than Enc(Message, PublicKey). However, it is important to point out this wrinkle
about the asymmetry about who can encrypt vs decrypt a message. Both you
and Alice will be encrypting messages in the proof protocol I propose, but only
Alice will be able to decrypt a message.

Homomorphic Property. Alice will be using a homomorphic encryption
scheme in my protocol. In a homomorphic encryption scheme, it is possible to
perform operations analogous to addition and multiplication, ⊕ and ⊗, on an
encrypted ciphertext. The results of the computation can then be decrypted
to reveal the mathematically correct answer. It is as if + and × were directly
applied to the original message.

Definition 5 (Homomorphic Property). Let (Enc, Dec) be a public-key encryption
scheme. This scheme has the homomorphic property if there are two operations,
⊕ and ⊗, such that for messages, Message and Message′, we have

Enc(Message) ⊕ Enc(Message′) = Enc(Message +Message′) (15a)

Enc(Message) ⊗ Enc(Message′) = Enc(Message ×Message′) (15b)

Again, note that anyone will be able to calculate Enc(Message)⊕Enc(Message′)
and Enc(Message) ⊗Enc(Message′), but not everyone will be able to decrypt the
output of these calculations. To do that, you would need to know the SecretKey.

Proof-By-Encryption. Here is how my new protocol works. At the begin-
ning of the period, Alice sends you the PublicKey for a homomorphic encryption
scheme and keeps the SecretKey to herself. You then use thisPublicKey to encrypt
the positions implied by your buy/sell recommendations, {Enc(Position𝑛)}𝑁𝑛=1,
and send them to an independent third party, whom I will call a “notary”. This
step commits you to specific long and short positions at the start of the period.

Once you send the notary your encrypted positions, you cannot change
them. However, unlike the broker in proof-by-trading, you do not need to trust
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the notary. He only ever sees the encrypted ciphertext associated with your
portfolio positions, not the plaintext values. From the notary’s point of view,
each Enc(Position𝑛) is as likely to represent a long position as a short position.

Once returns have been realized at the end of the period, Alice sends the
notary her encrypted residuals, {Enc(Resid𝑛)}𝑁𝑛=1. At this point, the notary com-
putes the inner product of these two vectors of encrypted ciphertexts

{ Enc(Position1) ⊗ Enc(Resid1) }
⊕ { Enc(Position2) ⊗ Enc(Resid2) }

. . .

⊕ { Enc(Position𝑁 ) ⊗ Enc(Resid𝑁 ) } = Enc(𝜋)

(16)

The output of this computation is still encrypted. It looks like gibberish to the
notary. But, when he sends it to Alice, she is able to decrypt it to reveal 𝜋, which
allows her to verify whether you have novel stock-picking skill.

Protocol 3 (EncryptIt).

(Step #1) At the start of the period, Alice creates a (PublicKey, SecretKey) pair
and sends you the PublicKey. You compute a recommendation for each
stock, {f(Characteristics𝑛)}𝑁𝑛=1, and the long/short positions that they
imply. Then, you commit yourself to these specific values by encrypt-
ing them, {Enc(Position𝑛)}𝑁𝑛=1, and sending the resulting vector of
ciphertexts to the notary.

(Step #2) At the end of the period, Alice sends the notary a ciphertext of her
encrypted residual returns, {Enc(Resid𝑛)}𝑁𝑛=1. The notary calculates
Enc(𝜋) as the inner product of your encrypted positions and Alice’s
encrypted residuals. Finally, he sends the encrypted output from this
calculation back to Alice, who decrypts it to reveal 𝜋.

If 𝜋 > 𝜋min for some 𝜋min > 0, then Alice decides that 𝑖 ∈ Alice′sProblem—i.e.,
that you have stock-picking skill. Otherwise, she decides 𝑖 ∉ Alice′sProblem.

It is important to emphasize that the notary is nothing more than a pedagog-
ical device—i.e., a helpful construction for introducing the key ideas. Unlike the
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broker in proof-by-trading, the notary never gets to see whether you took a long
or short position in any stock, Position𝑛. He only ever sees encrypted values
of your positions, Enc(Position𝑛). The notary also never sees the accuracy of
your buy/sell recommendations, 𝜋. He only ever has access to the associated
ciphertext, Enc(𝜋).

The notary has two jobs. He ensures that your profits are computed (a)
correctly and (b) based on the positions you calculated at the start of the period.
Both these jobs can be performed by protocols that are standard in the com-
puter science literature. “Zero-knowledge proofs are a major tool for forcing
participants in cryptographic protocols to behave correctly, that is, without
compromising anyone’s privacy. (Wigderson, 2019)” Likewise, as long as public-
key encryption schemes have existed, researchers have been using them to
make private commitments (e.g., see Goldwasser and Micali, 1982).

The economically interesting thing about EncryptIt is the shift in perspec-
tive it requires. You are trying to prove something to Alice. The onus is on you
to back up your claim about having a new way to pick stocks. So we naturally
think about Alice as a passive participant in your conversation. She just listens
to your pitch with her arms folded and says nothing. But what if Alice played a
more active role? She could just sit there and listen. But you can both benefit if
she takes the lead and creates a public-key encryption scheme for you both to
use. That Gestalt shift makes it possible to construct a better proof system. It is
what opens up new possibilities.

Main Result. Proposition 4 below shows that the EncryptIt protocol
solves both of the problems associated with proof-by-trading. EncryptIt is just
as secure as TradeOnIt. However, it requires no upfront capital to implement
and demonstrates that you have novel stock-picking skill. It solves Alice’s prob-
lem in the general case where she has already invested money with other active
managers in the past. Alice can use EncryptIt to determine whether you can
generate uncorrelated alpha.

Proposition 4 (Main Result). EncryptIt is an interactive proof system for
Alice′sProblem that generates zero-knowledge proofs and has no upfront cost.
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EncryptIt is clearly an interactive proof system for Alice′sProblem even
when Alice has a stock-selection rule of her own, {Resid𝑛}𝑁𝑛=1 ≠ {Return𝑛}𝑁𝑛=1. If
you have novel stock-picking skill, Alice will uncover this fact after interacting
with you according to EncryptIt (completeness). Otherwise, you have a 50-50
chance of guessing your way to above-average profits (soundness).

It is also clear that EncryptIt generates a zero-knowledge proof for de-
ciding each problem instance. The logic is the same as in proof-by-trading.
The only difference is that, in proof-by-encryption, security is guaranteed by a
cryptographic assumption; whereas, in proof-by-trading, it is guaranteed by an
assumption about how trustworthy your broker is as highlighted in Table 1.

In both cases, once returns have been realized at the end of the period, Alice
can simulate for herself all the possible ways of making 𝐶𝛼 correct predictions
from among 𝑁 possible stocks. Every one of these ways is observationally
equivalent to Alice. So all she can learn is that you knew how to calculate one
of them at the start of the period.

2 Implementation

The previous section shows how you can prove to Alice that you know about
a profitable new way to pick stocks by making use of a homomorphic encryption
scheme. Subsection 2.1 gives an example of a homomorphically encrypted buy
order. Then, in subsection 2.2, I verify the numerical precision of encrypted
estimates for your stock-picking skill. I do this for both the baseline setup where
you make binary buy/sell recommendations and for a continuous extension.

What’s more, in the baseline model, your stock-picking rule says “buy” for
half the stocks in your investable universe and “sell” for the other half. But, in
practice, you typically would not trade on every prediction. You would only act
on the strongest predictions. In subsection 2.3, I show that proof by encryption
produces a more informative signal than proof-by-trading in this scenario.
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2.1 Example Ciphertext

It is possible to implement the EncryptIt protocol using the homomorphic
encryption scheme in Brakerski and Vaikuntanathan (2011). Under this ap-
proach, each message gets converted into a pair of large polynomials with integer
coefficients. The size of the polynomials and the coefficient range are free pa-
rameters. For example, an encrypted ciphertext might take the form of a pair of
degree-15 polynomials with integer coefficients drawn from {0, 1, 2, . . . , 99999},
turning a single f(Characteristics𝑛) = “buy” recommendation into

Ciphertext𝑛 =
{
16828 · 𝑥0 + 7073 · 𝑥1 + 17328 · 𝑥2 + 23267 · 𝑥3

+ 18258 · 𝑥4 + 91451 · 𝑥5 + 2214 · 𝑥6 + 15985 · 𝑥7

+ 33554 · 𝑥8 + 2110 · 𝑥9 + 88677 · 𝑥10 + 28392 · 𝑥11

+ 67165 · 𝑥12 + 625 · 𝑥13 + 1172 · 𝑥14 + 69731 · 𝑥15,
90576 · 𝑥0 + 56869 · 𝑥1 + 64823 · 𝑥2 + 76276 · 𝑥3

+ 71635 · 𝑥4 + 12277 · 𝑥5 + 40128 · 𝑥6 + 36492 · 𝑥7

+ 76006 · 𝑥8 + 93634 · 𝑥9 + 5486 · 𝑥10 + 61917 · 𝑥11

+ 41216 · 𝑥12 + 6846 · 𝑥13 + 5987 · 𝑥14 + 25979 · 𝑥15
}

(17)

It would be more secure to use even larger polynomials with more possible
coefficient values. For example, I could have used degree-150 polynomials with
integer coefficients drawn from {0, 1, 2, . . . , 999999}. But this choice would have
entailed a much larger computational burden. There is a trade off.7

2.2 Numerical Precision

How precise are calculations performed on encrypted ciphertexts in Braker-
ski and Vaikuntanathan’s scheme?
7The variable 𝑥 in these polynomials is an arbitrary placeholder analogous to the 10 in base-10
numbers or the 2 in binary. For instance, I could write the number 73 as 7 · 101 + 3 · 100 in base
10 and the number 12 as 1 · 23 + 1 · 22 + 0 · 21 + 0 · 20 (i.e., 1100) in binary. If it seems weird to add
and multiply polynomials, remember that you are perfectly content with 73 + 12 and 73 × 12.
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Figure 1. Each dot corresponds to a simulated market environment with𝑁 = 500
stocks. 𝑥-axis: true accuracy of your stock-picking rule in a particular simulation,
𝛼 ∈ {0.00, 0.01, . . . , 0.15}. 𝑦-axis: implied accuracy based on the 𝜋 value that
Alice decrypts at the end of the EncryptIt protocol. I run 10,000 simulations at
each accuracy level. Diamonds depict outcomes where there is a gap between
the true 𝛼 and the value that Alice estimates based on Enc(𝜋).

Very.

Each dot in Figure 1 represents the results of a simulated market environ-
ment with 𝑁 = 500 stocks. The 𝑥 coordinate corresponds to the accuracy of your
stock-picking rule in a particular simulation, 𝛼 ∈ {0.00, 0.01, . . . , 0.15}. The 𝑦

coordinate corresponds to the implied accuracy based on what Alice decrypts
at the end of EncryptIt. I run 10,000 simulations at each accuracy level.

The left panel reports results where Position𝑛 ∈ {±$0.50} and Resid𝑛 ∈
{±1%}. The right panel reports results for an analogous exercise where both
variables are normally distributed: Position𝑛 ∼ Normal(0, 1/

√
𝑁) and Resid𝑛 ∼

Normal(0, 10%). When working with continuous random variables, the ac-
curacy parameter is defined as 𝛼 def

= Corr(Position,Resid) and I discretize the
continuous values using the approach in Hall, Fienberg, and Nardi (2011).

If the homomorphic encryption scheme worked perfectly, then every dot
would sit right on top of the 𝑦 = 𝑥 diagonal. This is exactly what I find in the
left panel using binary data, 𝑅2 = 100.0%. When using continuous variables,
the fit is hardly any worse, 𝑅2 = 99.7%. EncryptIt works as advertised using
an off-the-shelf homomorphic encryption scheme.
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2.3 A Better Signal

While the baseline model assumes that you trade on all buy/sell recommen-
dations, managers typically trade on their strongest predictions. For example, a
stock-picking rule might involve sorting stocks according to some characteristic
and then going long/short the highest/lowest decile. In this sort of setting, proof-
by-encryption generates a more informative signal about your stock-picking
skill than proof-by-trading.

I demonstrate this fact using a simulation exercise. Each simulation looks
at the monthly returns to 500 stocks over a two-year period, and I run 10,000
different simulations. The data-generating process for returns each month is

Return𝑛,𝑡 ← 1% + 3%·
{√

2% ·∑25
𝑘=1 Characteristic𝑛,𝑘

Can predict 2% using
all 25 predictors

+
√
98% · Noise𝑛,𝑡

Remaining 98% of
variation is random

}
(18)

The average monthly return for each stock is 1%. The standard deviation of
returns across stocks is 3%. There are 25 characteristics, Characteristic𝑛,𝑘

IID∼
Normal(0, 1/

√
25), which explain 2% of the cross-sectional variation. The re-

maining 98% of the variation is due to random noise, Noise𝑛,𝑡
IID∼ Normal(0, 1).

Alice is choosing between two emerging managers: you and Jim. I equate
your stock-picking skill with knowledge of the first characteristic, 𝑘 = 1. Jim does
not have stock-picking skill. Instead of knowing about one of the 25 characteris-
tics in Equation (18), Jim makes his return forecasts based on an arbitrary 26th
characteristic Characteristic𝑛,26

IID∼ Normal(0, 1/
√
25) that plays no direct role

in determining monthly returns. You and Jim both implement market-neutral
strategies that go long/short the highest/lowest decile and use 65% leverage.

Figure 2 shows that, on average your strategy has an annualized 𝜋 = 10%
regardless of whether you trade for a month (left panel) or two years (right
panel). Likewise, Jim’s strategy has 𝜋 = 0% at every horizon. However, the longer
you trade, the more informative your realized profits are. There is much more
separation between the light- and dark-gray distributions in the upper-right
panel than in the upper-left panel. Based on this logic, asset allocators often
refuse to meet with managers who have not been trading for 2+ years.
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Figure 2. Outcome distributions for you (light gray) and Jim (dark gray) across
10,000 simulations over the next month, three months, six months, one year,
and two years. Top panels show realized profits (𝜋; %/year). Bottom panels show
forecast accuracy (𝛼; %/1𝜎 change). Numbers on 𝑦-axis denote the average
across simulations. Numbers in white denote the distributional overlap. A
smaller overlap implies a more diagnostic signal.

My proof-by-encryption protocol can shorten that timeline. Rather than
simply waiting to see your profit-and-loss statement each month, Alice could
arrange to check the accuracy of your forecasts, 𝛼. The average accuracy of
your stock-picking rule is 𝛼 = 1.0% while Jim has 𝛼 = 0.0%. But again, the key
thing is the variance. The bottom panels of Figure 2 show that your forecast
accuracy is even more diagnostic of your skill level than your trading profits.
After two years, Jim’s forecasts are (0.31 − 0.20)/0.31 ≈ 35% less likely to be as
accurate as yours by pure chance.

The economic intuition behind this result is simple. There is information
about your stock-picking skill in the picks that you chose not to trade on. Your
long/short strategy does not trade 80% of the stocks in your investable universe.
But you still made return forecasts for these stocks. The information in these
untraded predictions can help Alice distinguish you from Jim. But, since you
did not trade on this information, it has no effect on your annualized 𝜋. By
contrast, 𝛼 reflects the accuracy of your return forecasts across all stocks in
your investable universe. As a result, Alice will be able to identify you as the
skilled manager faster when you use EncryptIt to demonstrate the accuracy
of your forecasts.
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3 Robustness

Is it always possible for you to give Alice a zero-cost zero-knowledge proof of
novel stock-picking skill? In subsection 3.1, I show that such a proof system will
exist in nearly all quantitative trading applications. Subsection 3.2 addresses
several edge-case concerns. And, in subsection 3.3, I give an example where no
zero-knowledge proof of skill can exist because skill is hard to recognize when
you see it. This is what it would take to rule out a proof-by-encryption.

3.1 Existence Result

EncryptIt produces zero-knowledge proofs to Alice′sProblem in a simple
highly stylized model of cross-sectional predictability. Suppose a researcher
were to complicate Alice’s problem to make it more realistic. Let’s call the
resulting problem RealisticAlice′sProblem. Because of these additional features,
the EncryptIt protocol might no longer give valid zero-knowledge proofs for
RealisticAlice′sProblem. However, I claim that, if RealisticAlice′sProblem really
is a more realistic model, then there will still exist a zero-knowledge proof
system for RealisticAlice′sProblem.

This claim stems from a classic result in the computer science literature.
A “one-way function” (Diffie and Hellman, 1976) is a function that is easy to
compute but hard to invert. And Goldreich, Micali, and Wigderson (1991) proved
that, if one-way functions exist, then all problems in NP have zero-knowledge
proof systems.

Definition 6 (One-Way Function). The polynomial-time function, OWF : {0, 1}★ ↦→
{0, 1}★, is a one-way function if there is a negligibly small probability that any
polynomial-time adversary Adversary

: can succeed at inverting it:

Pr
[
OWF(Adversary: [OWF(𝑥)]) = OWF(𝑥)

]
≤ 1/Poly( |𝑥 |) (19)

Theorem (Goldreich, Micali, and Wigderson, 1991). If one-way functions exist,
then there exists a zero-knowledge proof system for every problem in NP.
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I am obviously oversimplifying the problem that Alice faces when deciding
whether you have novel stock-picking skill. But, to overturn my main result,
Goldreich, Micali, and Wigderson (1991)’s theorem tells us that a researcher
would have to assume that RealisticAlice′sProblem ∉ NP. This would make
RealisticAlice′sProblem unrealistically complicated, which is exactly the oppo-
site of what the researcher was trying to do in the first place.

For there to be no zero-cost zero-knowledge proofs of skill, it would have
to be computationally hard for Alice to verify your skill level even if you told
her how you picked stocks. We do not live in that sort of world. Non-compete
clauses are common for quantitative equity traders.8 Garden leave is a thing.9

3.2 Specific Concerns

The EncryptIt protocol can be generalized in various ways. For one thing,
the protocol only requires multiplying pairs of encrypted numbers—i.e., you
compute Enc(𝑎) ⊗ Enc(𝑏) but never Enc(𝑎) ⊗ Enc(𝑏) ⊗ Enc(𝑐). There is no need
to use a fully homomorphic scheme. EncryptIt can accommodate a partially
homomorphic scheme, like Paillier (1999).

In the last section, we also saw how it is possible to apply EncryptIt to
continuous random variables. One can only homomorphically encrypt integer-
valued messages. So you must first discretize any continuous values before
encrypting them using some scheme like the one in Hall, Fienberg, and Nardi
(2011). But after doing this, the right panel of Figure 1 shows that mathemati-
cal results computed using homomorphically encrypted ciphertexts are still
numerically precise.

I have been working under the assumption that Alice does not deviate
from the proof protocol you both agree on at the start of a trading period. In
this scenario, Alice is typically called an “honest-but-curious verifier”. This
assumption is without loss of generality. Goldreich, Micali, and Wigderson
8Amy Whyte. “Noncompete Agreements Have Become ‘Ubiquitous’ in Financial Services and
Elsewhere.” Institutional Investor. December 10th, 2019.

9Alex Morrell. “The Wall Street Quant Battle to Lock Up Traders With Non-Competes.” Business
Insider. July 31st, 2022.
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(1991) showed how to make any zero-knowledge proof system for an honest-
but-curious verifier into a proof system that works against even a verifier might
strategically deviate from the proof protocol when it is in their own interest. In
that case, Alice would be called a “malicious verifier”.

The EncryptIt protocol does not reveal anything to you about how Alice is
picking stocks. Alice only shares the encrypted values of her residual returns at
the end of the period. The EncryptIt protocol also works in situations where
Alice does not have a stock-picking rule of her own—i.e., where {Resid𝑛}𝑁𝑛=1 =
{Return𝑛}𝑁𝑛=1. When Alice sends the notary her encrypted ciphertext on the
30th of the month, he cannot decrypt this vector of ciphertexts. Hence, he has
no way of knowing whether it represents raw or residualized returns. The logic
behind EncryptIt is the same either way.

3.3 Counterexample

Are there places where you cannot give a zero-cost zero-knowledge proof
that you have a new way to pick good investments? Yes. But these scenarios
are different from the one in this paper. Again, from Goldreich, Micali, and
Wigderson (1991), we know that it must be a situation where it is hard to
recognize good investment rules when you see them.

This sort of situation occurs in venture capital where it is often hard to
recognize when you have hit a home run even after the fact. For example, the
CEO of Excite famously turned down an offer to buy Google for $1 million in
1999 (Mallaby, 2022). This price tag seemed like an exorbitant sum, even to
Google’s existing investors. It was hard for them to recognize that Google would
be worth orders of magnitude more money in just a few short years.

Hence, there is no way for a venture capitalist to give a zero-cost zero-
knowledge proof that he/she has a new way to pick successful start-ups. This
counterexample points to a previously unappreciated economics. There is a
fundamental reason why it is harder to raise capital for a venture capital fund
than for a quantitative equities fund.
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4 Implications

This paper offers a new solution to a core problem in the field of asset pricing.
Before giving a manager money, an asset allocator wants to see evidence that
you have novel stock-picking skill. I show how to provide this evidence in
zero-knowledge and at zero cost using homomorphic encryption techniques. In
subsection 4.1, I describe how this proof system makes it possible to have a spot
market for profitable trading ideas. In subsection 4.2, I highlight the fact that my
proof-by-encryption protocol offers asset allocators a way to find uncorrelated
alpha. This is something that cannot be done with proof-by-trading. Finally,
subsection 4.3 discusses how it is possible to extend the machinery in this paper
to other strategy characteristics, such as trading capacity.

4.1 Spot Market

There is already a market for profitable trading ideas. But this market is not
a “spot market”. At the moment the price depends on your past track record. If
you have a long history of producing strong predictors, you will be able to sell
your next predictor at a fair price. Whereas, if this is your first transaction, you
may have to sell at a steep discount.

The existence of zero-cost zero-knowledge proofs of skill makes it possible to
have a spot market for profitable trading ideas. Under my proof-by-encryption
protocol, all that matters is the quality of the stock-picking rule that you are
currently selling. Before purchasing the rights to trade on your latest idea, any
buyer will be able to see how profitable this stock-picking rule is. But, because
you can give them a zero-cost zero-knowledge proof of this result, the buyer
need not learn anything else about your stock-picking rule.

A spot market for profitable trading ideas would fundamentally alter how the
active-management industry is structured. So much of the industry is organized
around keeping good trading ideas secret, and zero-knowledge proofs change
the requirements of secrecy. It is hard to imagine all the knock-on effects. That
being said, I think there are two particular implications worth highlighting.
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First, a spot market for profitable trading ideas would change how profits
are shared between traders and the people who fund them. Under the current
system, a trader will typically receive a tiny fraction of the profits from their
first profitable stock-picking rule. Early successes merely allow them to bargain
for a larger share of the profit from any future ideas.

With a spot market for profitable trading ideas, there is no reason why the
profits need to be split this way. A skilled stock picker would command the
competitive market price when selling his/her first good idea. For example,
student trading competitions do not need to end with the winner revealing
their approach. Likewise, with a spot market, social-investing platforms would
become a suboptimal way of advertising your stock-picking skill (Cookson,
Engelberg, and Mullins, 2023). There is no need to publicly broadcast your
buy/sell recommendations as a way to commit to knowing about them ahead of
time. Homomorphic encryption makes it possible to do this privately, allowing
you to profit from the idea.

Second, a spot market for profitable trading idea would also alter the kind of
information that gets into prices. For example, suppose Charles is a biochemistry
PhD student who has noticed an overlooked detail about the drug development
process. This is where his stock-picking skill comes from.

Because he is a poor PhD student, Charles needs to raise capital from Alice
in order to trade on it. As things stand now, he would likely have to give Alice
an in-depth description of this overlooked detail in order to get funding. And
this description would give Alice all the information she needed to trade on his
idea herself without paying Charles a dime. As a result, he would be unlikely
to trade on the idea and incorporate this information into prices under the
current regime.

This scenario would play out in a completely different way if there were a
spot market for profitable trading ideas. Proof-by-encryption makes it possible
to incorporate the information in Charles’s first (and likely only) stock-picking
rule into prices. And, by encouraging other amateur traders like Charles to do
like he did, this spot market would allow for more diverse kinds of information
to get impounded into prices.
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4.2 Uncorrelated Alpha

Asset allocators like Alice will invest money with a large number of different
managers. As such, they are not just interested in whether it would be profitable
to invest money with you in isolation. Alice wants to know whether it would be
profitable to add you to her existing portfolio. Even if you have stock-picking
skill, Alice may not want to invest money with you in a world where you are
merely duplicating the positions of one of her existing managers.

Asset allocators currently try to minimize the overlap between their man-
agers’ positions by looking for managers with different investable universes. For
example, suppose your investable universe is US large-cap stocks. If Alice has
already invested money with another manager who specializes in US large-cap
stocks, then she would not give money to you regardless of your skill level.
Whereas, if your investable universe was the FTSE 100 rather than the S&P 500,
Alice would consider investing with you. However, this approach is far from
perfect. Two managers with different investable universes may have highly
correlated returns. A momentum strategy involving S&P 500 stocks will have
similar returns to a momentum strategy involving FTSE 100 stocks.

Proof-by-encryption offers a better solution. Alice can use EncryptIt to
verify whether your stock-picking rule can predict her residual returns, allowing
her to learn whether you are generating profits in a way that is different from
what she is already doing. Moreover, she can run this test even in the same
investable universe. She can check whether you can forecast the component of
S&P 500 returns left unexplained by her other US large-cap manager.

The rise of passive investing has been one of the most talked about financial-
market trends over the past decade (Wurgler, 2011). This trend has important
consequences for both corporate decisions (e.g., see Azar, Schmalz, and Tecu,
2018; Bebchuk and Hirst, 2019) and price informativeness (e.g., see Bai, Philip-
pon, and Savov, 2016; Buffa, Vayanos, and Woolley, 2022). It is hard to form an
active portfolio for a large institutional investor. As asset allocator must identify
a group of active managers who are not only profitable on their own but also
different from one another.
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This is a difficult ask in a world where proof-by-trading is the norm. And the
difficulty of this problem is a major reason why many institutional investors
choose to simply track an established index, such as the S&P 500. By contrast,
proof-by-encryption gives asset allocators a straightforward way to accomplish
both goals. EncryptIt can be used to directly measure whether a manager can
produce uncorrelated alpha.

4.3 Accuracy and. . .

Suppose that Alice is worried about whether you have a novel way to pick
stocks AND whether this new stock-picking rule can be implemented at sufficient
scale. How much money could you pump into the long/short strategy implied by
your buy and sell recommendations? Jegadeesh and Titman (1993)’s momentum
stock-picking rule looks good on paper and at small scale. But the turnover it
requires can be very costly as the size of the portfolio increases.

There is no way to convey this sort of information via proof-by-trading. If
you had enough money to implement your long/short strategy at scale, then you
would not need outside funding from Alice. Goldreich, Micali, and Wigderson
(1991)’s result implies that it is possible for you to demonstrate the scale of your
novel stock-picking rule by modifying proof-by-encryption slightly.

Suppose you just told Alice about how your new stock-picking rule worked.
Before implementing a long/short strategy based on this rule, she would want
to predict its maximum scale. e.g., she might look at things like the turnover of
its portfolio positions. As long as Alice has a way to predict whether a strategy
has some property, then it is possible to prove that your new stock-picking rule
satisfies these criteria in zero knowledge and at zero cost.

Conclusion

This paper studies a classic problem in asset pricing. You are an emerging
manager with novel stock-picking skill. The trouble is that, in addition to being

34



skilled, you are also poor. So to implement a reasonably sized long/short strategy
based on your new stock-picking rule, you need to raise money from an outside
investor, Alice. Before giving you seed capital, Alice wants to see proof that you
can pick stocks as well as you say you can. What is the best way to prove to
Alice that you know about a profitable new way to pick stocks?

Previously, researchers only knew of two options. On one hand, you could
implement a small-scale version of your long/short strategy and show Alice the
resulting profits. This approach is nice because it reveals nothing about how
you pick stocks, only that you can do it. Unfortunately, it is expensive and says
nothing about the novelty of your recommendations. If Alice is already trading
on a cross-sectional predictor of her own, then she cannot tell whether your
stock-picking rule is different from hers by studying your excess returns.

On the other hand, if you really have no money at all, then the conventional
wisdom is that the only way to prove to Alice that you can pick stocks is to
describe to her how you pick them. This would be unwise. Even if successful,
proof-by-revelation would put you in a bad bargaining position when deciding
how to split the profits from trading on your new stock-picking rule.

This paper offers a third option based on homomorphic encryption. Proof-
by-encryption does not require you to have any upfront capital to trade with. It
also proves that your stock-picking rule is different from anything that Alice is
already trading on. The existence of a proof-by-encryption protocol suggests
that one could create a spot market for profitable trading ideas. Such a spot
market would fundamentally alter the active-management industry.

Technical Appendix

Proof (Lemma 1). The proof follows from the existence of the protocol below,
which uses realized returns to create a random collection of 𝑁 buy/sell rec-
ommendations, which are correct with probability (1/2 + 𝛼) for any choice of
𝛼 ∈ [0, 1/2).
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Protocol A (20/20Hindsight).

(Input) List of stocks, 𝑁 ; an accuracy level, 𝛼 ∈ [0, 1/2); and, a collection of
realized returns, {Resid𝑛}𝑁𝑛=1.

(Output) 𝑁 recommendations, {ExPostRec𝑛}𝑁𝑛=1 ∈ {“buy”, “sell”}𝑁 .

· · ·
(Step #1) Draw 𝑁 IID samples from a uniform distribution,

Sample𝑛
IID∼ Unif ( [0, 1]), (20)

(Step #2) Rank {Sample𝑛}𝑁𝑛=1 in ascending order.
(Step #3) Compute required number of correct predictions, 𝐶𝛼.
(Step #4) For stocks ranked 1 : 𝐶𝛼, assign recommendations as follows:

ExPostRec𝑛 =


“buy” if Resid𝑛 = +1%

“sell” if Resid𝑛 = −1%
(21)

For the remaining stocks ranked (𝐶𝛼 + 1) : 𝑁 , use the opposite rule:

ExPostRec𝑛 =


“buy” if Resid𝑛 = −1%

“sell” if Resid𝑛 = +1%
(22)

Every collection of recommendations produced by the 20/20Hindsight
protocol, {ExPostRec𝑛}𝑁𝑛=1, will be correct with probability (1/2 + 𝛼) for what-
ever initial accuracy level is provided, 𝛼 ∈ [0, 1/2). And this protocol involves
executing a fixed number of polynomial-time operations. □

Proof (Proposition 1). To prove that RevealIt is an interactive proof system
for Alice′sProblem, I need to verify completeness and soundness. I also need to
confirm that the Verifier’s role in RevealIt can be executed by a probabilistic
polynomial-time machine—i.e., that a tractability condition is satisfied.

(Completeness) If you give Alice recommendations, {f(Characteristics𝑛)}𝑁𝑛=1,
she can compute the 𝛼 of the recommendations via Equation
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(4). Thus, for all instances where 𝛼 > 𝛼min, she will decide
𝑖 ∈ Alice′sProblem at the end of RevealIt.

(Soundness) Instances where 𝑖 ∉ Alice′sProblem correspond to situations
where you lack stock-picking skill—i.e., situations where your
stock-picking rule makes buy/sell recommendations that are
correct with probability 1/2.

If you send Alice the buy/sell recommendations produced
by this rule, then she will infer that 𝛼 = 0 and decide that
𝑖 ∉ Alice′sProblem.

Alternatively, because you lack stock-picking skill, any other
collection of buy/sell recommendations that you might send
Alice at the start of the period will be correct no more than half
the time. So, if you sent Alice a randomly guessed collection of
buy/sell recommendations, you would fool her into thinking
𝑖 ∈ Alice′sProblem no more than half the time.

(Tractability) The Verifier protocol only requires Alice to calculate the
accuracy of 𝑁 buy/sell recommendations via Equation (4),
which can be done in polynomial time.

Hence, we can conclude that RevealIt represents a valid interactive proof
system for solving Alice′sProblem. □

Proof (Proposition 2). To prove that TradeOnIt is an interactive proof system
for Alice′sProblem when Alice has no stock-picking skill of her own, I need to
demonstrate that the same three properties hold (i.e., completeness, soundness,
and tractability) when we assume that Resid𝑛 = Return𝑛 for all 𝑛 = 1, . . . , 𝑁 .

(Completeness) Equation (4) implies that, in the final step of the TradeOnIt

protocol, your broker will send Alice a message containing,𝜋 =

(𝑁 ·|±$0.50|)×𝛼. So, if Alice sets𝜋min
def
= (𝑁 ·|±$0.50|)×𝛼min, she

will conclude that 𝛼 > 𝛼min on all instances 𝑖 ∈ Alice′sProblem.
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(Soundness) Instances where 𝑖 ∉ Alice′sProblem correspond to situations
where you lack stock-picking skill—i.e., situations where you
make recommendations that are correct with probability 1/2.

If you implemented the long/short strategy associated with
your stock-picking rule, then your broker would send Alice
a message containing 𝜋 = 0, and she would correctly decide
that 𝑖 ∉ Alice′sProblem.

Because you lack stock-picking skill, any other collection of
buy/sell recommendations will be profitable no more than half
the time. If you implemented a random long/short strategy,
then the message sent by your broker would fool Alice into
thinking that 𝑖 ∈ Alice′sProblem no more than half the time.

(Tractability) Alice only has to perform a single comparison,𝜋 > 𝜋min, which
can clearly be done in polynomial time.

Again, all three conditions are satisfied, so we can conclude that TradeOnIt
represents a valid interactive proof system for solving the restricted version of
Alice′sProblem where Alice has no stock-picking rule of her own. □

Proof (Proposition 3). Assume that Alice has no stock-picking rule of her own:
Resid𝑛 = Return𝑛 for all 𝑛 = 1, . . . , 𝑁 . For a given level of accuracy 𝛼 ∈ [0, 1/2),
I need to define an algorithm that can simulate the interaction Alice would
have with your broker in every possible instance where you know about a
stock-picking rule with that level of accuracy. And I need to show that all such
simulations are computationally indistinguishable to Alice.

First, I define the simulator algorithm for TradeOnIt.

Protocol B (TradeOnItSimulator).

(Input) List of stocks, 𝑁 ; an accuracy level, 𝛼 ∈ [0, 1/2); and, a collection of
realized returns, {Return𝑛}𝑁𝑛=1.

(Output) A message containing profit level, 𝜋.

· · ·
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(Step #1) Use the 20/20Hindsight protocol to generate a random recommen-
dations, {ExPostRec𝑛}𝑁𝑛=1, that are correct with probability (1/2 + 𝛼).

(Step #2) Use Equation (3) to compute the portfolio positions implied by these
recommendations.

(Step #3) Use Equation (4) to compute the profit, 𝜋, from trading on these
implied positions in the current period.

There are
(𝑁
𝐶𝛼

)
collections of recommendations that lead to Alice receiving

a message with profit 𝜋 = (𝑁 · | ± $0.50|) × 𝛼. And all messages containing
the same value of 𝜋 are observationally equivalent to her. So she is unable to
distinguish a 𝜋 signal that she herself simulated using the protocol above from
the one sent to her by your flesh-and-blood broker so long as both are based on
stock-picking rules with the same level of accuracy, 𝛼. □

Proof (Proposition 4). This proof demonstrates that EncryptIt is an interac-
tive proof system for Alice′sProblem which produces zero-knowledge proofs.

First, I prove EncryptIt is an interactive proof system for Alice′sProblem.
To do this, I need to demonstrate that the proof system satisfies the same com-
pleteness, soundness, and tractability requirements as above.

(Completeness) Equation (4) implies that the notary will compute an encrypted
profit value of Enc(𝜋) = Enc[(𝑁 · | ± $0.50|) × 𝛼]. Alice then
decrypts this ciphertext to reveal the plaintext value of 𝜋. So,
if Alice sets 𝜋min

def
= (𝑁 · | ± $0.50|) × 𝛼min, she will conclude

that 𝛼 > 𝛼min on all instances 𝑖 ∈ Alice′sProblem.

(Soundness) Instances where 𝑖 ∉ Alice′sProblem correspond to situations
where you lack stock-picking skill, 𝛼 = 0, meaning a long/short
strategy based on your stock-picking rule has 𝜋 = $0.

If you sent the notary encrypted values of the long/short
positions implied by your recommendations, he would calcu-
late an encrypted ciphertext for 𝜋 = $0. When Alice saw this
value, she would correctly conclude 𝑖 ∉ Alice′sProblem.
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Any other random collection of buy/sell recommendations
at the start of the period will be profitable with probability
1/2. So if you sent the notary some other randomly selected
long/short strategy, it would fool Alice with probability 1/2.

(Tractability) Each encryption and decoding task can be executed in polyno-
mial time. Alice has to do (𝑁 + 1) of them. She has to encrypt
her residual returns for 𝑁 stocks, and she has to decrypt the
profit value you send her. Thus, the overall computational
burden of the Verifier algorithm scales polynomially.

All three requirements are satisfied, so we can conclude that EncryptIt is a
valid interactive proof system for solving Alice′sProblem.

Now, I want to show that EncryptIt generates zero-knowledge proofs for
deciding membership in Alice′sProblem. To do this, I need to define another
algorithm that simulates the interaction Alice would have with you via the
notary in every possible instance where you know about a stock-picking rule
with a given level of accuracy, 𝛼 ∈ [0, 1/2). Then I need to verify that all such
simulations look the same to Alice.

Here is how the simulator algorithm works for EncryptIt.

Protocol C (EncryptItSimulator).

(Input) List of stocks, 𝑁 ; an accuracy level, 𝛼 ∈ [0, 1/2); and, a collection of
residual returns, {Resid𝑛}𝑁𝑛=1.

(Output) An encrypted ciphertext, Enc(𝜋).
· · ·

(Step #1) Use the 20/20Hindsight protocol to generate a random recommen-
dations, {ExPostRec𝑛}𝑁𝑛=1, that are correct with probability (1/2 + 𝛼).

(Step #2) Use Equation (3) to compute the portfolio positions implied by these
recommendations.

(Step #3) Use Equation (4) to compute the profit, 𝜋, generated by these implied
positions in the current period.

(Step #4) Encrypt this profit value to create Enc(𝜋).
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Just as we saw when analyzing the TradeOnIt protocol, there are
(𝑁
𝐶𝛼

)
pos-

sible collections of recommendations that might lead to Alice receiving an
encrypted ciphertext that decrypts to reveal 𝜋 = (𝑁 · | ± $0.50|) × 𝛼. And all
messages that decrypt to the same 𝜋 value are observationally equivalent to
her. So Alice is unable to distinguish an encrypted ciphertext that she herself
simulated using the protocol above from the one sent to her by you if both
are based on stock-picking rules with the same level of accuracy, 𝛼. Hence,
EncryptIt produces zero-knowledge proofs for Alice′sProblem.

Finally, EncryptIt does not require the prover to make any payments. It is
also an interactive proof system for the full version of Alice′sProblem, not just
the restricted version where Alice has no stock-picking rule of her own. □
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